Search results for "Sodium-Glucose Transporter 2 Inhibitor"
showing 10 items of 14 documents
SGLT-2 (Sodium-Glucose Cotransporter 2) Inhibition Reduces Ang II (Angiotensin II)-Induced Dissecting Abdominal Aortic Aneurysm in ApoE (Apolipoprote…
2019
Objective: Abdominal aortic aneurysm (AAA) is a pathological condition of permanent vessel dilatation that predisposes to the potentially fatal consequence of aortic rupture. SGLT-2 (sodium-glucose cotransporter 2) inhibitors have emerged as powerful pharmacological tools for type 2 diabetes mellitus treatment. Beyond their glucose-lowering effects, recent studies have shown that SGLT-2 inhibitors reduce cardiovascular events and have beneficial effects on several vascular diseases such as atherosclerosis; however, the potential effects of SGLT-2 inhibition on AAA remain unknown. This study evaluates the effect of oral chronic treatment with empagliflozin—an SGLT-2 inhibitor—on dissecting …
Clinical profiles and quality of care of subjects with type 2 diabetes according to their cardiovascular risk: an observational, retrospective study
2021
Abstract Background The European Society of Cardiology (ESC) recently defined cardiovascular risk classes for subjects with diabetes. Aim of this study was to explore the distribution of subjects with type 2 diabetes (T2D) by cardiovascular risk groups according to the ESC classification and to describe the quality indicators of care, with particular regard to cardiovascular risk factors. Methods The study is based on data extracted from electronic medical records of patients treated at the 258 Italian diabetes centers participating in the AMD Annals initiative. Patients with T2D were stratified by cardiovascular risk. General descriptive indicators, measures of intermediate outcomes, inten…
Filling the gap between Guidelines and Real World in the cardiovascular approach to the diabetic patients: the need for a call to action
2020
The sodium-glucose co-transporter 2 inhibitor empagliflozin improves diabetes-induced vascular dysfunction in the streptozotocin diabetes rat model b…
2014
Objective In diabetes, vascular dysfunction is characterized by impaired endothelial function due to increased oxidative stress. Empagliflozin, as a selective sodium-glucose co-transporter 2 inhibitor (SGLT2i), offers a novel approach for the treatment of type 2 diabetes by enhancing urinary glucose excretion. The aim of the present study was to test whether treatment with empagliflozin improves endothelial dysfunction in type I diabetic rats via reduction of glucotoxicity and associated vascular oxidative stress. Methods Type I diabetes in Wistar rats was induced by an intravenous injection of streptozotocin (60 mg/kg). One week after injection empagliflozin (10 and 30 mg/kg/d) was adminis…
SGLT2 Inhibitors as the Most Promising Influencers on the Outcome of Non-Alcoholic Fatty Liver Disease
2022
Non-alcoholic fatty liver disease (NAFLD), the most frequent liver disease in the Western world, is a common hepatic manifestation of metabolic syndrome (MetS). A specific cure has not yet been identified, and its treatment is currently based on risk factor therapy. Given that the initial accumulation of triglycerides in the liver parenchyma, in the presence of inflammatory processes, mitochondrial dysfunction, lipotoxicity, glucotoxicity, and oxidative stress, can evolve into non-alcoholic steatohepatitis (NASH). The main goal is to identify the factors contributing to this evolution because, once established, untreated NASH can progress through fibrosis to cirrhosis and, ultimately, be co…
The SGLT2 inhibitor empagliflozin improves the primary diabetic complications in ZDF rats
2017
Hyperglycemia associated with inflammation and oxidative stress is a major cause of vascular dysfunction and cardiovascular disease in diabetes. Recent data reports that a selective sodium-glucose co-transporter 2 inhibitor (SGLT2i), empagliflozin (Jardiance®), ameliorates glucotoxicity via excretion of excess glucose in urine (glucosuria) and significantly improves cardiovascular mortality in type 2 diabetes mellitus (T2DM). The overarching hypothesis is that hyperglycemia and glucotoxicity are upstream of all other complications seen in diabetes. The aim of this study was to investigate effects of empagliflozin on glucotoxicity, β-cell function, inflammation, oxidative stress and endothel…
The dapagliflozin and prevention of adverse outcomes in chronic kidney disease (DAPA-CKD) trial: baseline characteristics
2020
Abstract Background The Dapagliflozin and Prevention of Adverse outcomes in Chronic Kidney Disease (DAPA-CKD; NCT03036150) trial was designed to assess the effect of the sodium–glucose co-transporter 2 (SGLT2) inhibitor dapagliflozin on kidney and cardiovascular events in participants with CKD with and without type 2 diabetes (T2D). This analysis reports the baseline characteristics of those recruited, comparing them with those enrolled in other trials. Methods In DAPA-CKD, 4304 participants with a urinary albumin:creatinine ratio (UACR) ≥200 mg/g and estimated glomerular filtration rate (eGFR) between 25 and 75 mL/min/1.73 m2 were randomized to dapagliflozin 10 mg once daily or placebo. Me…
Insulin withdrawal in diabetic kidney disease : What are we waiting for?
2021
The prevalence of type 2 diabetes mellitus worldwide stands at nearly 9.3% and it is estimated that 20–40% of these patients will develop diabetic kidney disease (DKD). DKD is the leading cause of chronic kidney disease (CKD), and these patients often present high morbidity and mortality rates, particularly in those patients with poorly controlled risk factors. Furthermore, many are overweight or obese, due primarily to insulin compensation resulting from insulin resistance. In the last decade, treatment with sodium–glucose cotransporter 2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP1-RA) have been shown to be beneficial in renal and cardiovascular targets; however…
SGLT2i and GLP-1RA in Cardiometabolic and Renal Diseases: From Glycemic Control to Adipose Tissue Inflammation and Senescence
2021
Background. Over the last few years, the use of sodium-glucose cotransporter 2 inhibitors (SGLT2i) and glucagon-like peptide 1 receptor agonists (GLP-1RA) has increased substantially in medical practice due to their documented benefits in cardiorenal and metabolic health. In this sense, and in addition to being used for glycemic control in diabetic patients, these drugs also have other favorable effects such as weight loss and lowering blood pressure, and more recently, they have been shown to have cardio and renoprotective effects with anti-inflammatory properties. Concerning the latter, the individual or associated use of these antihyperglycemic agents has been linked with a decrease in p…
In response to the paper 'High-protein diet: A barrier to the nephroprotective effects of sodium-glucose co-transporter-2 inhibitors?'
2020
We agree with the paper recently published in your journal regarding the relationship between a high‐protein diet and the possible neutral effect of sodium‐glucose co‐transporter‐2 inhibitors (SGLT2inh),1 but wish to discuss certain nuances.